C:={a+bi∣a,b∈R,i2=−1}
The complex numbers are a field of ordered pairs, in the sense that (a,b)=(c,d) if a=c.
Definition
If z∈C (and so c=a+bi for a,b∈R) then we denote by:
- Complex Conjugate: zˉ and zˉ:=a−bi
- Modulus: ∣z∣2 where ∣z∣2:=(a+bi)(a−bi)=a2+b2∈R
- We note that z∈R,z=a+0i for a∈R. So, ∣z∣=a2+02=∣a∣.
Notation
If z=a+bi then
Re(z)Im(z):=a:=b
Proposition (Complex Facts)
Let z,w∈C. Then,
- z+w=zˉ+wˉ
- zw=zˉ⋅wˉ
- z+zˉ=2Re(z)
- z−zˉ=2Im(z)⋅i
- zzˉ=∣z∣2=Re(z)2+Im(z)2∈R
- ∣z∣>0 if z=0 and ∣0∣=0
- ∣zˉ∣=∣z∣
- ∣z⋅w∣=∣z∣⋅∣w∣
- ∣Re(z)∣≤∣z∣
- ∣Im(z)∣≤∣z∣
Proof: (Prop 1)
z+w=zˉ+wˉ
Let z=a+bi and w=c+di. where a,b,c,d∈R.
z+w=(a+bi)+(c+di)=(a+c)+(b+d)i
On the other hand,
zˉ+wˉ=a+bi+c+di=(a+c)−(b+d)i
Triangle Inequality
∣z+w∣≤∣z∣+∣w∣
Proof:
Since all terms are non negative, it suffices to show
∣z+w∣2≤(∣z∣+∣w∣)2
Then,
∣z+w∣2=(z+w)⋅(z+w)=(z+w)⋅(zˉ+wˉ)=(zzˉ)+zwˉ+wzˉ+wwˉ=∣z∣2+zwˉ+wˉzˉ+∣w∣2=∣z∣2+2Re(zwˉ)+∣w∣2
We note ∣Re(zwˉ)∣≤zwˉ=∣z∣⋅∣wˉ∣=∣z∣⋅∣w∣.
Continuing the inequality,
∣z+w∣2=∣z∣2+2Re(zwˉ)+∣w∣2≤∣z∣2+2∣z∣⋅∣w∣+∣w∣2=(∣z∣+∣w∣)2
And so the inequality holds true.
Cauchy-Schwarz Inequality
If a1,⋯an and b1,⋯bn are complex numbers, then
j=1∑najbj2≤j=1∑n∣aj∣2j=1∑n∣bj∣2
where the proof follows from the idea that B>0. and concludes at the inequality.
Also recall that
∣u⋅v∣≤∣∣u∣∣⋅∣∣v∣∣
Proof:
A=j=1∑n∣aj∣2B=j=1∑n∣bj∣2C=j=1∑najbj
Suppose B=0. Then the proof is trivial. Suppose not, in which B>0. Then,
j=1∑n∣Baj−Cbj∣2=j=1∑n(Baj−Cbj)⋅(Baj−Cbj)=j=1∑n(Baj−Cbj)(Baj−C⋅bj)=b2j=1∑najaj−BC∑ajbj−CB∑ajbj+CC∑bjbj=B2A−BCC−CBC+CCB=B2−B∣C∣2−∣C∣2B+∣C∣2B=AB2−∣C∣2B
In whzch AB2−∣C∣2B≥0 because B is positive. So,
⟺AB2≥∣C∣2B⟺AB≥∣C∣2
which is Cauchy-Schwarz.