Definition (Edge Coloring)

An edge coloring of a graph is an assignment of a color to each edge so that no two edges that share the same vertex share the same color.

For example, if we want to color Complete Graph ,

"\\usepackage{tikz-cd}\n\\begin{document}\n% https://q.uiver.app/#q=WzAsNCxbMSwxLCJcXGJ1bGxldCJdLFsxLDAsIlxcYnVsbGV0Il0sWzAsMiwiXFxidWxsZXQiXSxbMiwyLCJcXGJ1bGxldCJdLFszLDIsIiIsMCx7ImNvbG91ciI6WzMwLDYwLDYwXSwic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsyLDAsIiIsMCx7ImNvbG91ciI6WzEyMCw2MCw2MF0sInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMCwzLCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXSwic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFszLDEsIiIsMCx7ImNvbG91ciI6WzEyMCw2MCw2MF0sInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMSwyLCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXSwic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxLDAsIiIsMSx7ImNvbG91ciI6WzMwLDYwLDYwXSwic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dXQ==\n\\begin{tikzcd}\n\t& \\bullet \\\\\n\t& \\bullet \\\\\n\t\\bullet && \\bullet\n\t\\arrow[color={rgb,255:red,214;green,153;blue,92}, no head, from=1-2, to=2-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,92}, no head, from=1-2, to=3-1]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,92}, no head, from=2-2, to=3-3]\n\t\\arrow[color={rgb,255:red,92;green,214;blue,92}, no head, from=3-1, to=2-2]\n\t\\arrow[color={rgb,255:red,92;green,214;blue,92}, no head, from=3-3, to=1-2]\n\t\\arrow[color={rgb,255:red,214;green,153;blue,92}, no head, from=3-3, to=3-1]\n\\end{tikzcd}\n\\end{document}"²²²²
source code

with and .

Definition (Edge Chromatic Number)

We can find the Edge Chromatic Number,

Related: Definition (Chromatic Number).

It is not hard to see that

where is the line graph of the graph .

Edge Chromatic Number Bounds

From corollary, we have

maximally, if is a starfish graph, it’s line graph is a complete graph. This gives us another (albeit weaker) lower bound:

For an upper bound, from lemma,

What is the degree of some vertex in the line graph?

Suppose we had some edge connecting two starfishes centered on . Then

which gives us:

See Vizing’s Theorem.