Lemma (Pentagonal Center)
Given any polygon P in the plane with at most 5 sides, there is a point v inside of P with straight line paths to each of P ‘s vertices.
Proof: A triangle is trivial. We have 5 cases:
Case 1 : If we have no non-convex angles, then
"\\usepackage{tikz-cd}\n\\begin{document}\n\\begin{tikzcd}\n\t& \\bullet \\\\\n\t\\bullet & v & \\bullet \\\\\n\t\\bullet && \\bullet\n\t\\arrow[no head, from=1-2, to=2-3]\n\t\\arrow[no head, from=2-1, to=1-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-1, to=2-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-2, to=1-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-2, to=2-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-2, to=3-1]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-2, to=3-3]\n\t\\arrow[no head, from=2-3, to=3-3]\n\t\\arrow[no head, from=3-1, to=2-1]\n\t\\arrow[no head, from=3-3, to=3-1]\n\\end{tikzcd}\n\\end{document}" ² ² v ² ² ² source code
any point on the interior works.
Case 2 : If we have 1 non-convex angle, then
"\\usepackage{tikz-cd}\n\\begin{document}\n\\begin{tikzcd}\n\t\\bullet && \\bullet \\\\\n\t& \\bullet \\\\\n\t& v \\\\\n\t\\bullet && \\bullet\n\t\\arrow[no head, from=1-1, to=2-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=1-1, to=3-2]\n\t\\arrow[no head, from=1-3, to=4-3]\n\t\\arrow[no head, from=2-2, to=1-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-2, to=1-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-2, to=2-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-2, to=4-1]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-2, to=4-3]\n\t\\arrow[no head, from=4-1, to=1-1]\n\t\\arrow[no head, from=4-3, to=4-1]\n\\end{tikzcd}\n\\end{document}" ² ² ² v ² ² source code
then we can place v inside the non-convex angle.
Case 3 : If we have two adjacent non-convex angles,
"\\usepackage{tikz-cd}\n\\begin{document}\n\\begin{tikzcd}\n\t&& \\bullet \\\\\n\t&& v \\\\\n\t\\\\\n\t& \\bullet && \\bullet \\\\\n\t\\bullet &&&& \\bullet\n\t\\arrow[no head, from=1-3, to=5-5]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-3, to=1-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-3, to=4-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-3, to=4-4]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-3, to=5-5]\n\t\\arrow[no head, from=4-2, to=5-1]\n\t\\arrow[no head, from=4-4, to=4-2]\n\t\\arrow[no head, from=5-1, to=1-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=5-1, to=2-3]\n\t\\arrow[no head, from=5-5, to=4-4]\n\\end{tikzcd}\n\\end{document}" ² v ² ² ² ² source code
then we can place near the opposite vertex.
Case 4 : If we have two non-adjacent non-convex angles,
"\\usepackage{tikz-cd}\n\\begin{document}\n\\begin{tikzcd}\n\t&&&& \\bullet \\\\\n\t&&&&& \\bullet \\\\\n\t&&& \\bullet & v \\\\\n\t\\bullet &&&&&&&& \\bullet\n\t\\arrow[no head, from=1-5, to=2-6]\n\t\\arrow[no head, from=2-6, to=4-9]\n\t\\arrow[no head, from=3-4, to=1-5]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-4, to=3-5]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-5, to=1-5]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-5, to=2-6]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-5, to=4-1]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-5, to=4-9]\n\t\\arrow[no head, from=4-1, to=3-4]\n\t\\arrow[no head, from=4-9, to=4-1]\n\\end{tikzcd}\n\\end{document}" ² ² ² v ² ² source code
and we can place v near the far wall so it can see all the vertices.
Case 5 : If we more than two non-convex angles, then this cannot happen. In particular, the sum of angles for an n − gon is 180 ( n − 2 ) .
Corollary (Hexagonal Center)
No, this is not true for hexagons. Consider the following counter example:
"\\usepackage{tikz-cd}\n\\begin{document}\n% https://q.uiver.app/#q=WzAsNixbMSwxLCJcXGJ1bGxldCJdLFswLDIsIlxcYnVsbGV0Il0sWzQsMSwiXFxidWxsZXQiXSxbMywxLCJcXGJ1bGxldCJdLFs1LDAsIlxcYnVsbGV0Il0sWzIsMSwiXFxidWxsZXQiXSxbMCw0LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzQsMywiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFszLDIsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMiwxLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzEsNSwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs1LDAsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XV0=\n\\begin{tikzcd}\n\t&&&&& \\bullet \\\\\n\t& \\bullet & \\bullet & \\bullet & \\bullet \\\\\n\t\\bullet\n\t\\arrow[no head, from=1-6, to=2-4]\n\t\\arrow[no head, from=2-2, to=1-6]\n\t\\arrow[no head, from=2-3, to=2-2]\n\t\\arrow[no head, from=2-4, to=2-5]\n\t\\arrow[no head, from=2-5, to=3-1]\n\t\\arrow[no head, from=3-1, to=2-3]\n\\end{tikzcd}\n\\end{document}" ² ² ² ² ² ² source code
which cannot have central vertex that keeps the graph planar.
Lemma (Triangulation Leads to Interior Vertex)
Let G be a connected, planar graph. Let ∣ V ∣ > 3 . If G is constructed by triangulation , then any such G will have an interior vertex v of deg G ( v ) ≤ 5 .
Proof: By the Handshake Lemma , and theorem ,
v ∈ V ∑ deg ( v ) = 2∣ E ∣ = 6∣ V ∣ − 12
Rearranging, we get
v ∈ V ∑ ( 6 − deg ( v )) = 12
Since the graph is triangulated, the infinite face is a triangle, and thus bounded by 3 boundary vertices. Then the degree of each is 2 , such that they can only contribute at most 4 , unless they do not connect anything else. Thus, some other vertex must have 6 − deg ( v ) > 0 .
Fary’s Theorem
Any finite simple planar graph G has a plane embedding where all of the edges are straight line segments.
Proof:
We proceed with induction on ∣ V ∣ . For ∣ V ∣ ≤ 3 , this is trivial. Assume G is connected (otherwise we can do this on each connected component separately).
Assume we can draw any graph with n vertices as planar. WTS this is true for ∣ V ∣ + 1 . Suppose we triangulated the graph G to get G ′ . By Lemma (Triangulation Leads to Interior Vertex) , we have some interior vertex v where deg G ′ ( v ) ≤ 5 .
Consider graph G ′′ = G ′ − { v } . Then by the induction hypothesis, G ′′ is planar with straight lines. Since deg G ′ ( v ) ≤ 5 , then the face created in G ′′ is no more than a pentagon. By applying Lemma (Pentagonal Center) , we can reinsert v that makes the graph still planar, but with straight lines.