Lemma (Pentagonal Center)

Given any polygon in the plane with at most sides, there is a point inside of with straight line paths to each of ‘s vertices.

Proof: A triangle is trivial. We have cases:

Case 1: If we have no non-convex angles, then

"\\usepackage{tikz-cd}\n\\begin{document}\n\\begin{tikzcd}\n\t& \\bullet \\\\\n\t\\bullet & v & \\bullet \\\\\n\t\\bullet && \\bullet\n\t\\arrow[no head, from=1-2, to=2-3]\n\t\\arrow[no head, from=2-1, to=1-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-1, to=2-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-2, to=1-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-2, to=2-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-2, to=3-1]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-2, to=3-3]\n\t\\arrow[no head, from=2-3, to=3-3]\n\t\\arrow[no head, from=3-1, to=2-1]\n\t\\arrow[no head, from=3-3, to=3-1]\n\\end{tikzcd}\n\\end{document}"²²v²²²
source code

any point on the interior works.

Case 2: If we have non-convex angle, then

"\\usepackage{tikz-cd}\n\\begin{document}\n\\begin{tikzcd}\n\t\\bullet && \\bullet \\\\\n\t& \\bullet \\\\\n\t& v \\\\\n\t\\bullet && \\bullet\n\t\\arrow[no head, from=1-1, to=2-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=1-1, to=3-2]\n\t\\arrow[no head, from=1-3, to=4-3]\n\t\\arrow[no head, from=2-2, to=1-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-2, to=1-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-2, to=2-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-2, to=4-1]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-2, to=4-3]\n\t\\arrow[no head, from=4-1, to=1-1]\n\t\\arrow[no head, from=4-3, to=4-1]\n\\end{tikzcd}\n\\end{document}"²²²v²²
source code

then we can place inside the non-convex angle.

Case 3: If we have two adjacent non-convex angles,

"\\usepackage{tikz-cd}\n\\begin{document}\n\\begin{tikzcd}\n\t&& \\bullet \\\\\n\t&& v \\\\\n\t\\\\\n\t& \\bullet && \\bullet \\\\\n\t\\bullet &&&& \\bullet\n\t\\arrow[no head, from=1-3, to=5-5]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-3, to=1-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-3, to=4-2]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-3, to=4-4]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=2-3, to=5-5]\n\t\\arrow[no head, from=4-2, to=5-1]\n\t\\arrow[no head, from=4-4, to=4-2]\n\t\\arrow[no head, from=5-1, to=1-3]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=5-1, to=2-3]\n\t\\arrow[no head, from=5-5, to=4-4]\n\\end{tikzcd}\n\\end{document}"²v²²²²
source code

then we can place near the opposite vertex.

Case 4: If we have two non-adjacent non-convex angles,

"\\usepackage{tikz-cd}\n\\begin{document}\n\\begin{tikzcd}\n\t&&&& \\bullet \\\\\n\t&&&&& \\bullet \\\\\n\t&&& \\bullet & v \\\\\n\t\\bullet &&&&&&&& \\bullet\n\t\\arrow[no head, from=1-5, to=2-6]\n\t\\arrow[no head, from=2-6, to=4-9]\n\t\\arrow[no head, from=3-4, to=1-5]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-4, to=3-5]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-5, to=1-5]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-5, to=2-6]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-5, to=4-1]\n\t\\arrow[color={rgb,255:red,214;green,92;blue,214}, no head, from=3-5, to=4-9]\n\t\\arrow[no head, from=4-1, to=3-4]\n\t\\arrow[no head, from=4-9, to=4-1]\n\\end{tikzcd}\n\\end{document}"²²²v²²
source code

and we can place near the far wall so it can see all the vertices.

Case 5: If we more than two non-convex angles, then this cannot happen. In particular, the sum of angles for an gon is .

Corollary (Hexagonal Center)

No, this is not true for hexagons. Consider the following counter example:

"\\usepackage{tikz-cd}\n\\begin{document}\n% https://q.uiver.app/#q=WzAsNixbMSwxLCJcXGJ1bGxldCJdLFswLDIsIlxcYnVsbGV0Il0sWzQsMSwiXFxidWxsZXQiXSxbMywxLCJcXGJ1bGxldCJdLFs1LDAsIlxcYnVsbGV0Il0sWzIsMSwiXFxidWxsZXQiXSxbMCw0LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzQsMywiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFszLDIsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMiwxLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzEsNSwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs1LDAsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XV0=\n\\begin{tikzcd}\n\t&&&&& \\bullet \\\\\n\t& \\bullet & \\bullet & \\bullet & \\bullet \\\\\n\t\\bullet\n\t\\arrow[no head, from=1-6, to=2-4]\n\t\\arrow[no head, from=2-2, to=1-6]\n\t\\arrow[no head, from=2-3, to=2-2]\n\t\\arrow[no head, from=2-4, to=2-5]\n\t\\arrow[no head, from=2-5, to=3-1]\n\t\\arrow[no head, from=3-1, to=2-3]\n\\end{tikzcd}\n\\end{document}"²²²²²²
source code

which cannot have central vertex that keeps the graph planar.

Lemma (Triangulation Leads to Interior Vertex)

Let be a connected, planar graph. Let . If is constructed by triangulation, then any such will have an interior vertex of .

Proof: By the Handshake Lemma, and theorem,

Rearranging, we get

Since the graph is triangulated, the infinite face is a triangle, and thus bounded by boundary vertices. Then the degree of each is , such that they can only contribute at most , unless they do not connect anything else. Thus, some other vertex must have .

Fary’s Theorem

Any finite simple planar graph has a plane embedding where all of the edges are straight line segments.

Proof:

We proceed with induction on . For , this is trivial. Assume is connected (otherwise we can do this on each connected component separately).

Assume we can draw any graph with vertices as planar. WTS this is true for . Suppose we triangulated the graph to get . By Lemma (Triangulation Leads to Interior Vertex), we have some interior vertex where .

Consider graph . Then by the induction hypothesis, is planar with straight lines. Since , then the face created in is no more than a pentagon. By applying Lemma (Pentagonal Center), we can reinsert that makes the graph still planar, but with straight lines.