Definition (Graph Subdivision)

A subdivision of graph is obtained by placing vertices in the middle of some of its edges.

"\\usepackage{tikz-cd}\n\\begin{document}\n% https://q.uiver.app/#q=WzAsMTMsWzAsMCwiXFxidWxsZXQiXSxbMCwyLCJcXGJ1bGxldCJdLFsyLDIsIlxcYnVsbGV0Il0sWzIsMCwiXFxidWxsZXQiXSxbMywxLCJcXGxvbmdyaWdodGFycm93Il0sWzQsMCwiXFxidWxsZXQiXSxbNCwyLCJcXGJ1bGxldCJdLFs2LDIsIlxcYnVsbGV0Il0sWzYsMCwiXFxidWxsZXQiXSxbNCwxLCJcXGJ1bGxldCJdLFs1LDAsIlxcYnVsbGV0Il0sWzYsMSwiXFxidWxsZXQiXSxbNSwxLCJcXGJ1bGxldCJdLFswLDEsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMSwyLCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzIsMywiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFszLDAsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMCwyLCIiLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzYsNywiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs1LDEyLCIiLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzEyLDcsIiIsMSx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbNywxMSwiIiwxLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxMSw4LCIiLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzgsMTAsIiIsMSx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMTAsNSwiIiwxLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFs1LDksIiIsMSx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbOSw2LCIiLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d\n\\begin{tikzcd}\n\t\\bullet && \\bullet && \\bullet & \\bullet & \\bullet \\\\\n\t&&& \\longrightarrow & \\bullet & \\bullet & \\bullet \\\\\n\t\\bullet && \\bullet && \\bullet && \\bullet\n\t\\arrow[no head, from=1-1, to=3-1]\n\t\\arrow[no head, from=1-1, to=3-3]\n\t\\arrow[no head, from=1-3, to=1-1]\n\t\\arrow[no head, from=1-5, to=2-5]\n\t\\arrow[no head, from=1-5, to=2-6]\n\t\\arrow[no head, from=1-6, to=1-5]\n\t\\arrow[no head, from=1-7, to=1-6]\n\t\\arrow[no head, from=2-5, to=3-5]\n\t\\arrow[no head, from=2-6, to=3-7]\n\t\\arrow[no head, from=2-7, to=1-7]\n\t\\arrow[no head, from=3-1, to=3-3]\n\t\\arrow[no head, from=3-3, to=1-3]\n\t\\arrow[no head, from=3-5, to=3-7]\n\t\\arrow[no head, from=3-7, to=2-7]\n\\end{tikzcd}\n\\end{document}"²²²²²¡!²²²²²²²
source code

Lemma (Subdivisions Preserve Planarity)

If is a subdivision of , then is planar is planar.

Proof: Given a plane embedding of we can add vertices of in the middles of to get the embedding of . Given the embedding of , we remove vertices and join edges to get the embedding of .