Let X,Y be independent RVs. Suppose that we know the distribution of the random variables. What is the distribution of X+Y?
Discrete
Suppose X,Y:Ω→Z and are independent. We have:
fX+Y(n)=P(X+Y=n)=k∈Z∑P(X=k,Y=n−k)=k∈Z∑P(X=k)⋅P(Y=n−k)=k∈Z∑PX(k)⋅PY(n−k)=PX∗PY(n)
Indeed,
PX+Y=PX∗PY
Continuous
Given X,Y independent RVs and densities fX,fy are given, then:
FX+Y(t)=P(X+Y≤t)=∫x+y≤tfX,Y(x,y)dxdy=∫−∞∞∫−∞t−xfX(x)fY(y)dydx=∫−∞∞∫−∞tfX(x)fY(s−x)dsdx=∫−∞t∫−∞∞fX(x)fY(s−x)dsdx
Then,
fX+Y(s)=∫−∞∞fX(x)fY(s−x)dx
or, fX∗fY(s)
Example 1
X,Y∼\Unif[0,1] and independent. What is fX+Y? Let s=X+Y.
We have:
fX(x)={100≤x≤1otherwisefY(s−x)={100≤s−x≤1otherwise
Indeed, we have the case when 0≤x≤1 and the case where
0≤s−x≤1⟺s−1≤x≤1
We calculate the convolutions:
fX+Y(s)=∫0sfX(x)fY(s−x)dx=∫0s1−01⋅1−01dx=[x]0s=sfX+Y(s)=∫s−111⋅1dx=[x]s−11=1−(s−1)=2−s
such that
fX+Y(s)=⎩⎨⎧s2−s00≤s≤11≤s≤2otherwise
Example 2
Convolutions prove Sum of 2 Independent RVs.