It is the probability of all possible pairs of two random variables.
Discrete Case
Given X,Y on Ω where
XY:Ω→{x1,x2,⋯}:Ω→{y1,y2,⋯}
The joint probability mass function:
fX,Y(xi,yi)=P(X=xi,Y=yi)
where the marginal distribution is
fX(x)=P(X=xi)=P(yi⋃{X=xi,Y=yi})=j∑fX,Y(xi,yi)
and similarly with Y.
Example
Let Ω be the infinite sequence of coin flips,
{0,1}N={w∣w1w2⋯,w∈{0,1}}
and let each flip be independent and fair.
Suppose we had a RV, X:Ω→R where X(ω)=ω1+ω2, the sum of the first 2 coin flips.
- X={0,1,2}
- PX(0)=P(X=0)=P(ω0+ω1=0)=0.52=0.25
- PX(1)=P(ω1+ω2=1)=0.50
- PX(2)=0.25
Conditional Distribution of X given event A={w1=0}. Or,
P(X=0∣A)=P(ω1=0)P(X=0,ω1=0)=0.50.25=0.5
P(X=1∣A)=P(ω1=0)P(X=1,ω1=0)=0.50.25=0.5
Let A be an event in Ω where A⊆Ω. Then, let
X:Ω→{x1,x2,⋯}
The Conditional Probability mass function of X given A is
PX(xi∣A)=P(X=xi∣A)
Example
Throw 2 fair dice {1,2,3,4,5,6}. Let
X= sum of the two diceA={X≤5}
The sample space of X is {2,3,⋯10,11,12}.
PX(2∣A)=P(A)P(X=2,A)=P(A)P(X=2)
where P(X=2)=P({1,1})=(61)2.
- P(X=3)=P((1,2),(2,1))=2(61)2
- P(X=4)=3(61)2
- P(X=5)=4(61)2
Returning back to PX(⋅∣A), we get
- PX(2∣A)=1/361/361+2+3+41=101
- PX(3∣A)=102
- PX(4∣A)=103
- PX(5∣A)=104
We can find the expected value also:
E[X∣A]=Xi∑xiPX(xi∣A)
We have:
E[X∣A]=2⋅101+3⋅102+4⋅103+5⋅104=1040=4
Without the conditional event A,
E[X]=2⋅E[D]=2(61(1+2+3+4+5+6))=2⋅3.5=7