Lecture
Terminology
- Discrete Time: T=N,Z, fininite set
- Continuous Time: T=[0,∞),[0,1],⋯
- Discrete Space: S:= a finite set ,N
- Continuous Space: S=R,Rd,⋯
Review
Conditional Probability
P(A∣B)=P(B)P(A∩B)
Law of Total Probability. If {Ai} is a partition of space B,
P(B)=j∑P(B∣Aj)P(Aj)
Bayes Rule
P(Ai∣B)=∑jP(B∣Aj)P(Aj)P(B∣Ai)P(Ai)
Independence of 2 events
P(A∩B)=P(A)P(B)⟺A,B are independent
Distribution Function:
FX(x)=P(X≤x)
- Discrete RV: PX(k)=P(X=k)
- Continuous RV: fX(x) where P(X∈A)=∫AfX(x)dx
Expectation
E[x]=i∑xiPX(xi)
E[x]=∫xfX(x)dx
Variance and Covariance
Var(X)=E[(X−E[X])2]=E[X2]=(E[X])2
Cov(X, Y):=E[(X−E[X])(Y−E[Y])]:=\EXY−\EX\EY
We say X,Y are uncorrelated if Cov(X,Y)=0. In particular
X,Y independent⟹Cov(X,Y)=0
other direction is not true in general.